Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3873514.v1

ABSTRACT

The continued emergence of SARS-CoV-2 variants necessitates updating COVID-19 vaccines to match circulating strains. The immunogenicity and efficacy of these vaccines must be tested in pre-clinical animal models. In Syrian hamsters, we measured the humoral and cellular immune response after immunization with the nanoparticle recombinant Spike (S) protein-based COVID-19 vaccine (Novavax, Inc.). We also compared the efficacy of the updated monovalent XBB.1.5 variant vaccine to previous COVID-19 vaccines for the induction of XBB.1.5 and EG.5.1 neutralizing antibodies and protection against a challenge with the EG.5.1 variant of SARS-CoV-2. Immunization induced high levels of spike-specific serum IgG and IgA antibodies, S-specific IgG and IgA antibody secreting cells, and antigen specific CD4 + T-cells. The XBB.1.5 and XBB.1.16 vaccines, but not the Prototype vaccine, induced high levels of neutralizing antibodies against XBB.1.5 and EG.5.1 variants of SARS-CoV-2. Upon challenge with the Omicron EG.5.1 variant, the XBB.1.5 and XBB.1.16 vaccines reduced the virus load in the lungs, nasal turbinates, trachea and nasal washes. The bivalent vaccine continued to offer protection in the trachea and lungs, but protection was reduced in the upper airways. In contrast, the monovalent Prototype vaccine no longer offered good protection, and breakthrough infections were observed in all animals and tissues. Thus, the protein-based XBB.1.5 vaccine is immunogenic and can protect against the Omicron EG.5.1 variant in the Syrian hamster model.


Subject(s)
Tracheomalacia , Breakthrough Pain , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.30.554497

ABSTRACT

Monovalent SARS-CoV-2 Prototype (Wuhan-Hu-1) and bivalent (Prototype + BA.4/5) COVID-19 vaccines have demonstrated a waning of vaccine-mediated immunity highlighted by lower neutralizing antibody responses against SARS-CoV-2 Omicron XBB sub-variants. The reduction of humoral immunity due to the rapid evolution of SARS-CoV-2 has signaled the need for an update to vaccine composition. A strain change for all authorized/approved vaccines to a monovalent composition with Omicron subvariant XBB.1.5 has been supported by the WHO, EMA, and FDA. Here, we demonstrate that immunization with a monovalent recombinant spike protein COVID-19 vaccine (Novavax, Inc.) based on the subvariant XBB.1.5 induces cross-neutralizing antibodies against XBB.1.5, XBB.1.16, XBB.2.3, EG.5.1, and XBB.1.16.6 subvariants, promotes higher pseudovirus neutralizing antibody titers than bivalent (Prototype + XBB.1.5) vaccine, induces SARS-CoV-2 spike-specific Th1-biased CD4+ T-cell responses against XBB subvariants, and robustly boosts antibody responses in mice and nonhuman primates primed with a variety of monovalent and bivalent vaccines. Together, these data support updating the Novavax vaccine to a monovalent XBB.1.5 formulation for the 2023-2024 COVID-19 vaccination campaign.


Subject(s)
COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.07.552330

ABSTRACT

The emergence of SARS-CoV-2 variants with greater transmissibility or immune evasion properties has jeopardized the existing vaccine and antibody-based countermeasures. Here, we evaluated the efficacy of boosting with the protein nanoparticle NVX-CoV2373 or NVX-CoV2540 vaccines containing ancestral or BA.5 S proteins, respectively, in mRNA-immunized pre-immune hamsters, against challenge with the Omicron BA.5 variant of SARS-CoV-2. Serum antibody binding and neutralization titers were quantified before challenge, and viral loads were measured 3 days after challenge. Compared to an mRNA vaccine boost, NVX-CoV2373 or NVX-CoV2540 induced higher serum antibody binding responses against ancestral Wuhan-1 or BA.5 spike proteins, and greater neutralization of Omicron BA.1 and BA.5 variants. One and three months after vaccine boosting, hamsters were challenged with the Omicron BA.5 variant. NVX-CoV2373 and NVX-CoV2540 boosted hamsters showed reduced viral infection in the nasal washes, nasal turbinates, and lungs compared to unvaccinated animals. Also, NVX-CoV2540 BA.5 boosted animals had fewer breakthrough infections than NVX-CoV2373 or mRNA-vaccinated hamsters. Thus, immunity induced by NVX-CoV2373 or NVX-CoV2540 boosting can protect against the Omicron BA.5 variant in the Syrian hamster model.


Subject(s)
Breakthrough Pain , Virus Diseases
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.08.447631

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to spread globally. As SARS-CoV-2 has transmitted from person to person, variant viruses have emerged with elevated transmission rates and higher risk of infection for vaccinees. We present data showing that a recombinant prefusion-stabilized Spike (rS) protein based on the B.1.351 sequence (rS-B.1.351) was highly immunogenic in mice and produced neutralizing antibodies against SARS-CoV-2/WA1, B.1.1.7, and B.1.351. Mice vaccinated with our prototype vaccine NVX-CoV2373 (rS-WU1) or rS-B.1.351 alone, in combination, or as a heterologous prime boost, were protected when challenged with live SARS-CoV-2/B.1.1.7 or SARS-CoV-2/B.1.351. Virus titer was reduced to undetectable levels in the lungs post-challenge in all vaccinated mice, and Th1-skewed cellular responses were observed. A strong anamnestic response was demonstrated in baboons boosted with rS-B.1.351 approximately one year after immunization with NVX-CoV2373 (rS-WU1). An rS-B.1.351 vaccine alone or in combination with prototype rS-WU1 induced protective antibody- and cell-mediated responses that were protective against challenge with SARS-CoV-2 variant viruses.


Subject(s)
Coronavirus Infections
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.05.442782

ABSTRACT

The 2019 outbreak of a severe respiratory disease caused by an emerging coronavirus, SARS-CoV-2, has spread globally with high morbidity and mortality. Co-circulating seasonal influenza has greatly diminished recently, but expected to return with novel strains emerging, thus requiring annual strain adjustments. We have developed a recombinant hemagglutinin (HA) quadrivalent nanoparticle influenza vaccine (qNIV) produced using an established recombinant insect cell expression system to produce nanoparticles. Influenza qNIV adjuvanted with Matrix-M was well-tolerated and induced robust antibody and cellular responses, notably against both homologous and drifted A/H3N2 viruses in Phase 1, 2, and 3 trials. We also developed a full-length SARS-CoV-2 spike protein vaccine which is stable in the prefusion conformation (NVX-CoV2373) using the same platform technology. In phase 3 clinical trials, NVX-CoV2373 is highly immunogenic and protective against the prototype strain and B.1.1.7 variant. Here we describe the immunogenicity and efficacy of a combination quadrivalent seasonal flu and COVID-19 vaccine (qNIV/CoV2373) in ferret and hamster models. The combination qNIV/CoV2373 vaccine produces high titer influenza hemagglutination inhibiting (HAI) and neutralizing antibodies against influenza A and B strains. The combination vaccine also elicited antibodies that block SARS-CoV-2 spike protein binding to the human angiotensin converting enzyme-2 (hACE2) receptor. Significantly, hamsters immunized with qNIV/CoV2373 vaccine and challenged with SARS-CoV-2 were protected against weight loss and were free of replicating SARS-CoV-2 in the upper and lower respiratory tract with no evidence of viral pneumonia. This study supports evaluation of qNIV/CoV2373 combination vaccine as a preventive measure for seasonal influenza and CoVID-19. Highlights Combination qNIV/CoV2373 vaccine induced protective hemagglutination inhibition (HAI) responses to seasonal influenza A and B unchanged when formulated with recombinant spike. Combination qNIV/CoV2373 vaccine maintained clinical and virologic protection against experimental challenge with SARS-CoV-2. Combination qNIV/CoV2373 vaccine showed no clinical or histological sign of enhanced disease following experimental challenge with SARS-CoV-2. Combination qNIV/CoV2373 vaccine induced antibodies against SARS-CoV-2 neutralizing epitopes common between US-WA and B.1.352 variant.


Subject(s)
Pneumonia, Viral , COVID-19 , Respiratory Tract Infections
6.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3821080

ABSTRACT

Recently approved vaccines have shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, and how boosting alters immunity to wildtype and newly emerging strains, remains incompletely understood. Here we profiled the humoral immune response in a cohort of non-human primates immunized with a recombinant SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a one or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had minimal effects, boosting significantly altered the humoral response, driving unique vaccine-induced antibody fingerprints. Differences in antibody effector functions and neutralization were associated with protection in the upper and lower respiratory tract, pointing to compartment-specific determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies targeting emerging SARS-CoV-2 variants. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.Funding: This work was funded by Operation Warp Speed. We thank Colin Mann and Kathryn Hastie for production of Spike antigens. We thank Nancy Zimmerman, Mark and Lisa Schwartz, an anonymous donor (financial support), Terry and Susan Ragon, and the SAMANA Kay MGH Research Scholars award for their support. We acknowledge support from the Ragon Institute of MGH, MIT and Harvard, the Massachusetts Consortium on Pathogen Readiness (Mass CPR), the NIH (3R37AI080289-11S1, R01AI146785, U19AI42790-01, U19AI135995-02, U19AI42790-01, 1U01CA260476 – 01, CIVIC75N93019C00052), National Science Foundation Graduate Research Fellowship Grant No. #1745302, the Gates foundation Global Health Vaccine Accelerator Platform funding (OPP1146996 and INV-001650), and the Musk Foundation.Conflict of Interest: NP, MGX, JHT, BZ, SM, AMG, MJM, ADP, GG, GS, and LE are current or past employees of Novavax, Inc. and have stock options in the company. GA is the founder of Serom Yx Systems, Inc. AZ is a current employee of Moderna, Inc. but conducted this work before employment.Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. YG, RC, MJG, CA, KMP, CL, DY, KB, MEM, JL, DM, CM, SS, FA, FK, EOS, DL, and MBF declare no competing interest.Ethical Approval: The work was conducted in accordance with a protocol approved by Texas Biomed’s Institutional Animal Care and Use Committee. All subjects signed informed consent and safety oversight was monitored by a data monitoring board.


Subject(s)
Myotonic Dystrophy , Adenomatous Polyposis Coli
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.05.429759

ABSTRACT

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.

8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-200342.v1

ABSTRACT

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.

9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256578

ABSTRACT

There is an urgent need for a safe and protective vaccine to control the global spread of SARS-CoV-2 and prevent COVID-19. Here, we report the immunogenicity and protective efficacy of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length SARS-CoV-2 spike (S) glycoprotein stabilized in the prefusion conformation. Cynomolgus macaques (Macaca fascicularis) immunized with NVX-CoV2373 and the saponin-based Matrix-M adjuvant induced anti-S antibody that was neutralizing and blocked binding to the human angiotensin-converting enzyme 2 (hACE2) receptor. Following intranasal and intratracheal challenge with SARS-CoV-2, immunized macaques were protected against upper and lower infection and pulmonary disease. These results support ongoing phase 1/2 clinical studies of the safety and immunogenicity of NVX-CoV2327 vaccine (NCT04368988). HighlightsO_LIFull-length SARS-CoV-2 prefusion spike with Matrix-M1 (NVX-CoV2373) vaccine. C_LIO_LIInduced hACE2 receptor blocking and neutralizing antibodies in macaques. C_LIO_LIVaccine protected against SARS-CoV-2 replication in the nose and lungs. C_LIO_LIAbsence of pulmonary pathology in NVX-CoV2373 vaccinated macaques. C_LI


Subject(s)
COVID-19 , Lung Diseases
10.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-39239.v1

ABSTRACT

The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd immunity to control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length spike (S) protein, stabilized in the prefusion conformation. Purified NVX-CoV2373 S form 27.2 nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice and baboons, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicits high titer anti-S IgG that is associated with blockade of hACE2 receptor binding, virus neutralization, and protection against SARS-CoV-2 challenge in mice with no evidence of vaccine-associated enhanced respiratory disease (VAERD). NVX-CoV2373 vaccine also elicits multifunctional CD4+ and CD8+ T cells, CD4+ T follicular helper T cells (Tfh), and the generation of antigen-specific germinal center (GC) B cells in the spleen. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2327 with Matrix-M (NCT04368988).


Subject(s)
Respiratory Tract Diseases , COVID-19
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.29.178509

ABSTRACT

The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd immunity to control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length spike (S) protein, stabilized in the prefusion conformation. Purified NVX-CoV2373 S form 27.2nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice and baboons, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicits high titer anti-S IgG that is associated with blockade of hACE2 receptor binding, virus neutralization, and protection against SARS-CoV-2 challenge in mice with no evidence of vaccine-associated enhanced respiratory disease (VAERD). NVX-CoV2373 vaccine also elicits multifunctional CD4+ and CD8+ T cells, CD4+ T follicular helper T cells (Tfh), and the generation of antigen-specific germinal center (GC) B cells in the spleen. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2327 with Matrix-M (NCT04368988).


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL